您的位置: 首页 > 业界 > 正文

【环球新要闻】超越ConvNeXt!Transformer 风格的卷积网络视觉基线模型Conv2Former

2022-12-30 08:20:04 来源:
↑ 点击蓝字关注极市平台作者丨科技猛兽编辑丨极市平台

极市导读

本文提出一种卷积调制模块,利用卷积来建立关系,这比注意力机制在处理高分辨率图像时更高效,称为 Conv2Former。作者在 ImageNet 分类、目标检测和语义分割方面的实验也表明,Conv2Former 比以前基于 CNN 的模型和大多数基于 Transformer 的模型表现得更好。>>加入极市CV技术交流群,走在计算机视觉的最前沿


(资料图)

本文目录

1 Conv2Former:Transformer 风格的卷积网络视觉基线模型(来自南开大学,字节跳动)1.1 Conv2Former 论文解读1.1.1 背景和动机1.1.2 卷积调制模块1.1.3 Conv2Former 整体架构1.1.4 实验结果

1 Conv2Former:Transformer 风格的卷积网络视觉基线模型

论文名称:Conv2Former: A Simple Transformer-Style ConvNet for Visual Recognition

论文地址:https://arxiv.org/pdf/2211.11943.pdf

1.1.1 背景和动机

以 VGGNet、Inception 系列和 ResNet 系列为代表的 2010-2020 年代的卷积神经网络 (ConvNets) 在多种视觉任务中取得了巨大的进展,它们的共同特点是顺序堆叠多个基本模块 (Basic Building Block),并采用金字塔结构 (pyramid network architecture),但是却忽略了显式建模全局上下文信息的重要性。SENet 模块系列模型突破了传统的 CNN 设计思路,将注意力机制引入到 CNN 中以捕获远程依赖,获得了更好的性能。

自从 2020 年以来,视觉 Transformer (ViTs) 进一步促进了视觉识别模型的发展,在 ImageNet 图像分类和下游任务上表现出比最先进的 ConvNets 更好的结果。这是因为与只进行局部建模的卷积操作相比,Transformer 中的自注意力机制能够对全局的成对依赖进行建模,提供了一种更有效的空间信息编码方法。然而,在处理高分辨率图像时,自注意力机制导致的计算成本是相当大的。

为了解决这个问题,一些 2022 年经典的工作试图回答:如何借助卷积操作,打造具有 Transformer 风格的卷积网络视觉基线模型?

比如 ConvNeXt[1]:将标准 ResNet 架构现代化,并使用与 Transformer 相似的设计和训练策略,ConvNeXt 可以比一些 Transformer 表现得更好。

从原理和代码详解FAIR去年的惊艳之作:全新的纯卷积模型ConvNeXt

再比如 HorNet[2]:通过建模高阶的相互作用,使得纯卷积模型可以做到像 Transformer 一样的二阶甚至更高的相互作用。

精度超越ConvNeXt的新CNN!HorNet:通过递归门控卷积实现高效高阶的空间信息交互

再比如 RepLKNet[3],SLaK[4]:通过 31×31 或者 51×51 的超大 Kernel 的卷积,使得纯卷积模型可以建模更远的距离。

又对ConvNets下手了!详解SLaK:从稀疏性的角度将卷积核扩展到 51×51

到目前为止,如何更有效地利用卷积来构建强大的 ConvNet 体系结构仍然是一个热门的研究课题。

1.1.2 卷积调制模块

本文的关键就是本小节介绍的卷积调制模块。如下图1所示, 对于传统的 Self-attention, 给定一个序列长度为 的输入 , 自注意力模块首先通过线性层得到 key , query , 和 value , 其中 是通道数。 是输入的空间大小。输出是注意力矩阵 (本质是相似度得分矩阵) :

式中,度量每一对输入令牌之间的关系,可以写成:

为了简单起见,这里省略了 scale factor,自注意模块的计算复杂度随着序列长度N的增加呈二次增长,带来了更高的计算代价。

在卷积调制模块中, 不通过2式计算相似度得分矩阵 。具体来说, 给定输入 , 作者使用一个大小为 的 Depth-wise 卷积 和 Hadamard 积计算输出:

式中, 是 Hadamard 积, 是两个线性层的参数。上述卷积调制操作使每个空间位置 与以 为中心的 平方区域内的所有像素相关, 通道之间的信息交互可通过线性层实现。每个空间位置的输出是正方形区域内所有像素的加权和。

优势: 卷积调制模块利用卷积来建立关系,这比注意力机制在处理高分辨率图像时更高效。

图1:卷积调制模块示意图

ConvNeXt 表明,将 ConvNets 的核大小从3扩大到7可以提高分类性能。然而,进一步增加 Kernel 的大小几乎不会带来性能上的提升,反而会在没有重新参数化的情况下增加计算负担。但作者认为,使 ConvNeXt 从大于 7×7的 Kernel Size 中获益很少的原因是使用空间卷积的方式。对于 Conv2Former,当 Kernel Size 从 5×5 增加到 21×21 时,可以观察到一致的性能提升。这种现象不仅发生在 Conv2Former-T (82.8→83.4) 上,也发生在参数为80M+ 的 Conv2Former-B (84.1→84.5) 上。考虑到模型效率,默认的 Kernel Size 大小可以设置为 11×11。

图2:几种模块的空间编码过程比较

权重策略的优化: 注意这里作者直接将深度卷积的输出作为权重,对线性投影后的特征进行调制。Hadamard 积之前既没有使用激活层,也没有使用归一化层 (例如 Sigmoid 或 LN 层),如果像 SE 模块那样加一个 Sigmoid 函数,会使性能降低 0.5% 以上。

1.1.3 Conv2Former 整体架构

如下图3所示,与ConvNeXt 和 Swin Transformer 相似,作者的 Conv2Former 也采用了金字塔架构。总共有4个 Stage,每个 Stage 的特征分辨率依次递减。根据模型大小尺寸,一共设计了5个变体:Conv2Former-N,Conv2Former-T, Conv2Former-S, Conv2Former-B,Conv2Former-L。

图3:Conv2Former 整体架构

当可学习参数数量固定时,如何安排网络的宽度和深度对模型性能有影响。原始的 ResNet-50 将每个 Stage 的块数设置为 (3,4,6,3)。ConvNeXt-T 按照 Swin-T 的模式将 Block 数之比更改为 (3,3,9,3),并对较大的模型将 Block 数之比更改为 (1,1,9,1)。Conv2Former 的设置如下图4所示。可以观察到,对于一个小模型 (参数小于30M),更深的网络表现更好。

图4:Conv2Former 的架构配置
1.1.4 实验结果

ImageNet-1K 实验分为两种,一种是直接在 ImageNet-1K 上面训练和验证,另一种是先在 ImageNet-22K 上预训练,再在 ImageNet-1K 上微调和验证。

ImageNet-1K 实验设置

数据集:ImageNet-1K 训练 300 Epochs,ImageNet-1K 验证。

优化器: AdamW, lr batch_size :1024, , weight decay 为 , 数据增强: MixUp, CutMix, Stochastic Depth, Random Erasing, Label Smoothing, RandAug。

ImageNet-22K 实验设置

数据集:ImageNet-22K 预训练 90 Epochs,ImageNet-1K 微调 30 Epochs,ImageNet-1K 验证。

如下图5所示是 ImageNet-1K 实验结果。对于小型模型 (< 30M),与 ConvNeXt-T 和 Swin-T 相比,Conv2Former 分别有 1.1% 和 1.7% 的性能提升。即使 Conv2Former-N 只有 15M 参数和 2.2G FLOPs,其性能也与具有 28M 参数和 4.5G FLOPs 的 SwinT-T 相同。对于其他流行的模型,Conv2Former 也比类似模型尺寸的模型表现更好。Conv2Former-B 甚至比 EfficientNetB7 表现得更好 (84.4% vs . 84.3%),后者的计算量是 Conv2Former 的两倍 (37G vs. 15G)。

图5:ImageNet-1K 实验结果

如下图6所示是 ImageNet-22K 的实验结果。作者遵循 ConvNeXt 中使用的设置来训练和微调模型。与 ConvNeXt 的不同变体相比,当模型尺寸相似时,Conv2Former 都表现得更好。此外,我们可以看到,当在更大的分辨率384×384 上进行微调时,Conv2Former-L 获得了比混合模型 (如 CoAtNet 和 MOAT) 更好的结果,Conv2Former-L 达到了 87.7% 的最佳结果。

图6:ImageNet-22K 实验结果

如下图8所示是关于卷积核大小的消融实验结果。在 大小增加到 21 × 21 之前,性能增益似乎已经饱和。这个结果与 ConvNeXt 得出的结论截然不同,ConvNeXt 得出的结论是,使用大于 7×7 的 Kernel 不会带来明显的性能提升。

图7:onv2Former 对于大卷积核的泛化效果很好

消融实验1:卷积核大小

如下图8所示是关于卷积核大小的消融实验结果。在 Kernel Size 增加到 21 × 21 之前,性能增益已经饱和。这个结果与 ConvNeXt 得出的结论截然不同,ConvNeXt 得出的结论是,使用大于 7×7 的 Kernel Size 不会带来明显的性能提升。这表明 Conv2Former 的做法能比传统方式更有效地利用大 Kernel 的优势。

图8:卷积核大小,融合策略的消融实验结果

消融实验2:不同融合策略的影响

如下图8, 9所示是关于不同融合策略影响的消融实验结果。除了上述两种融合策略外, 作者还尝试使用其他方法来融合特征映射, 包括在 之后添加一个 Sigmoid 函数, 对 进行 归一化 处理, 将 的值线性归一化到(0,1]。可以看到, Hardmard 积比其他操作的结果更好。作者发现, 无论是通过 Sigmoid 函数, 还是通过线性的归一化操作, 将 线性化到 之间, 都会对性能有损害。

直筒架构实验结果

遵循 ConvNeXt 的做法,作者也训练了 Conv2Former 的直筒架构 (Isotropic Models) 版本,结果如下图9所示。作者将 Conv2Former-IS 和 Conv2Former-IB 的块数设置为18,并调整通道数以匹配模型大小。字母 "I" 表示直筒架构,可以看到,对于 22M 参数左右的小型模型,Conv2Former-IS 比 DeiT-S 的表现要好得多。当将模型尺寸放大到 80M+ 时,Conv2Former-IB 达到了 82.7% 的 Top-1 Accuracy,这也比 ConvNeXt-IB 高 0.7%,比 DeiT-B 高0.9%。

图9:直筒架构实验结果

目标检测实验结果

如下图10所示是不同骨干网络,以 Mask R-CNN 为检测头和 Cascade Mask R-CNN 为实例分割头在 COCO 数据集的实验结果。训练策略遵循 ConvNeXt。对于小模型,使用 Mask R-CNN 框架时,Conv2Former-T 比 SwinT-T 和 ConvNeXt-T 获得了约 2% AP 的改进。

图10:目标检测实验结果

语义分割实验结果

如下图11所示是不同骨干网络,以 UperNet 为分割头在 ADE20k 上的实验结果。对于不同尺度的模型,我们的Conv2Former可以优于Swin Transformer和ConvNeXt。

总结

本文试图回答:如何借助卷积操作,打造具有 Transformer 风格的卷积网络视觉基线模型。本文提出一种卷积调制模块,利用卷积来建立关系,这比注意力机制在处理高分辨率图像时更高效。最终的模型称为 Conv2Former,它通过只使用卷积和 Hadamard 积,简化了注意力机制。卷积调制操作是一种利用大核卷积的更有效的方法。作者在 ImageNet 分类、目标检测和语义分割方面的实验也表明,Conv2Former 比以前基于 CNN 的模型和大多数基于 Transformer 的模型表现得更好。

参考

^A ConvNet for the 2020s^HorNet: Efficient High-Order Spatial Interactions with Recursive Gated Convolutions^Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs^More ConvNets in the 2020s: Scaling up Kernels Beyond 51 × 51 using Sparsity

公众号后台回复“CNN100”,获取100 篇 CNN 必读的经典论文资源下载

极市干货

技术干货:数据可视化必须注意的30个小技巧总结|如何高效实现矩阵乘?万文长字带你从CUDA初学者的角度入门实操教程:Nvidia Jetson TX2使用TensorRT部署yolov5s模型|基于YOLOV5的数据集标注&训练,Windows/Linux/Jetson Nano多平台部署全流程

#极市平台签约作者#

科技猛兽

知乎:科技猛兽

清华大学自动化系19级硕士

研究领域:AI边缘计算 (Efficient AI with Tiny Resource):专注模型压缩,搜索,量化,加速,加法网络,以及它们与其他任务的结合,更好地服务于端侧设备。

作品精选

搞懂 Vision Transformer 原理和代码,看这篇技术综述就够了用Pytorch轻松实现28个视觉Transformer,开源库 timm 了解一下!(附代码解读)轻量高效!清华智能计算实验室开源基于PyTorch的视频 (图片) 去模糊框架SimDeblur投稿方式:添加小编微信Fengcall(微信号:fengcall19),备注:姓名-投稿△长按添加极市平台小编觉得有用麻烦给个在看啦~

关键词: 实验结果 高分辨率

国内油价或将迎来“四连跌” “第15轮”调整将于下周二晚上
众所周知,油价的高低一直牵动着燃油车主的心。前段时间,油价猛涨,让车主加油都变得小心翼翼。8月8日,智车派了解到,8月9日24时,国内成
2022-08-08
湖南省人社厅公布7个热门职业的专项职业能力考核规范
怎样开展直播、进行直播复盘?母婴护理需要掌握哪些技巧……近日,湖南省人社厅公布电商直播销售、母婴护理等7个热门职业的专项职业能力考核
2022-06-20
唐山曹妃甸推动京津冀协同发展 产业协同转移全面提速
春暖渤海湾,书写新画卷。位于唐山曹妃甸的金隅天坛(唐山)木业科技有限公司的生产车间内一片繁忙景象——铺装、压机、翻板等工作正紧张有序
2022-03-19
石家庄海关共签发RCEP原产地证书864份 货值3.9亿元
自今年1月1日RCEP(《区域全面经济伙伴关系协定》)正式实施以来,截至3月14日,石家庄海关共签发RCEP原产地证书864份,货值3 9亿元。据介绍
2022-03-19
蚌埠海关累计签发RCEP原产地证书35份 涉及金额2583.09万元
在蚌埠海关报关大厅原产地证办理窗口,海关关员仔细核对着递交过来的材料。十分钟后,一份RCEP原产地证书打印盖章后交到了企业业务员手中。
2022-03-19
昆明西山区:“双招双引”推动人才链和产业链融合发展
为激励党员干部在营商环境建设中担当作为,昆明市西山区深入实施人才强区战略和人才领跑工程,建立健全招商引资和招才引资并轨新模式,以产
2022-03-19
【环球新要闻】超越ConvNeXt!Transformer 风格的卷积网络视觉基线模型Conv2Former
↑点击蓝字关注极市平台作者丨科技猛兽编辑丨极市平台极市导读本文提出一种卷积调制模块,利用卷积来建立关系,这比注意力机制在处理高分辨率
2022-12-30
环球焦点!乾照光电(300102.SZ)获海信视像增持3.19%的股份、不排除未来12个月内继续增持的可能
格隆汇12月29日丨乾照光电公布,公司于近日收到海信视像科技股份有限公司(“海信视像”)出具的《厦门乾照光电股份有限公司详式权益变动报告书
2022-12-29
环球通讯!通化东宝:超速效赖脯胰岛素注射液中国I期临试完成总结报告
通化东宝公告,公司收到国家药品监督管理局签发的关于超速效赖脯胰岛素注射液(THDB0206注射液)的药物临床试验批准通知书后,已经完成了一项关
2022-12-29
天天热文:一加携手 AAC 瑞声科技,全球独家首发仿生振感马达
速途网讯今日,一加官方又公布了新机的一项全球首发技术——仿生振感马达。一加方面称,一加11将全球独家首发仿生振感马达,该马达由一加携手A
2022-12-29
焦点关注:振兴路上,帮扶干部接续奋斗(干部状态新观察)
内蒙古扎赉特旗医疗帮扶团队组团帮扶,守护群众健康本报记者张枨内蒙古自治区兴安盟扎赉特旗人民医院急诊室内,一名中年女子突发重病,情况十
2022-12-29
环球观点:筹码持续集中+股价低位+高成长的小市值科技股揭秘,依顿电子盈利能力提升幅度高居第一
近期两大科创指数大幅反弹,12月26日创业板指涨近2%,科创50指数涨超3%,27日两大指数再度涨超1%。兴业证券认为,自11月以来,市场风格显著分
2022-12-29
沧州:8个重大科技专项项目确定 引领经济社会高质量发展
为充分发挥科技在经济社会高质量发展中的引领和支撑作用,沧州市确定8个项目为2021年全市重大科技专项项目。这8个重大科技专项项目分别为:
2022-03-19
  中新网海口1月23日电(王子谦 符宇群)海南省高级人民法院院长陈凤超23日说,2021年海南法院为自贸港建设提供坚强司法保障,全年有效管
2022-01-24
  新华社武汉1月23日电(记者王贤)随着春节假期临近,从广州、深圳等地返回湖北的旅客较多。为此,23日,武汉站、汉口站、襄阳东站、十堰
2022-01-24
  1月22日0—24时,广东省新增本土确诊病例3例和本土无症状感染者1例,均为珠海报告。23日,珠海市疫情防控新闻发布会上,珠海市政府副秘
2022-01-24
青海海西州德令哈市发生3.7级地震
  据中国地震台网正式测定,1月23日11时58分在青海海西州德令哈市发生3 7级地震,震源深度9千米,震中位于北纬38 40度,东经97 35度。
2022-01-24
  北京2022年冬奥会和冬残奥会颁奖花束已于近期完成交付。与传统的鲜切花不同,这些花束全部采用上海市非物质文化遗产“海派绒线编结技艺
2022-01-24
  中新网宿迁1月23日电 (刘林 张华东)核酸检测是当下及时发现潜在感染者、阻断疫情传播的有效方法。23日,记者从宿迁市宿豫区警方获悉
2022-01-24
  记者从天津市人社局获悉,从明天(24日)起,天津2022年度第一期积分落户申报工作正式开始,这是新修订的《天津市居住证管理办法》《天津
2022-01-24
  中新社北京1月23日电 (记者 刘亮)记者23日从中国海关总署获悉,2021年,中国海关组织开展“国门绿盾”专项行动,在寄递、旅客携带物
2022-01-24
  记者从天津市疫情防控指挥部获悉,天津疫情第341—360例阳性感染者基本信息公布。  目前,这20例阳性感染者已转运至市定点医院做进一
2022-01-24
“最美基层民警”武文斌:案子破了最管用
  中新网吕梁1月23日电 题:“最美基层民警”武文斌:案子破了最管用  作者 高瑞峰  同事称他为“拼命三郎”。从警14年,武文斌破
2022-01-24
  据“西安发布”消息,截至2022年1月23日,雁塔区长延堡街道近14天内无新增本地病例和聚集性疫情。根据国务院联防联控机制关于分区分级
2022-01-24
  中新网西宁1月23日电 (记者 孙睿)据青海省地震台网测定,2022年1月23日10点21分(北京时间)在青海省海西州德令哈市(北纬38 44度,东经
2022-01-24
江西南昌:市民赏年画迎新年 书法家挥毫送春联
  (新春见闻)江西南昌:市民赏年画迎新年 书法家挥毫送春联  1月23日,“赏年画过大年”新年画作品联展江西南昌站活动在江西省文化馆
2022-01-24
  中新网成都1月23日电 (祝欢)成都市第十七届人民代表大会第六次会议23日在成都举行,成都市中级人民法院院长郭彦与成都市人民检察院检
2022-01-24
列车临时停车3分钟救旅客
  (新春见闻)列车临时停车3分钟救旅客  中新网广州1月23日电 (郭军 黄伟伟)“车长,车长,4号车厢有位旅客腹涨难忍,身体不舒服”…
2022-01-24
女子背负命案潜逃24年 因涉疫人员核查落网
  中新网湖州1月23日电(施紫楠 徐盛煜 赵学良)1998年7月,犯罪嫌疑人杜某因家庭琐事,用菜刀将自己的弟媳砍伤致死。案发后,她从老家河
2022-01-24
广东“00后”雄狮少年锤炼功夫迎新春
  (新春见闻)广东“00后”雄狮少年锤炼功夫迎新春  中新社广州1月23日电 题:广东“00后”雄狮少年锤炼功夫迎新春  作者 孙秋霞 
2022-01-24
03-19 2022岳阳国际旅游节开幕 特色农产品展销等系列活动目不暇接
2022岳阳国际旅游节开幕 特色农产品展销等系列活动目不暇接
今天,天下洞庭岳阳市君山区第九届良心堡油菜花节暨2022岳阳国际旅游节开幕,菊红、粉红、水红、桃红、紫色、白色等七色组成的4万亩花海在 [详细]
03-19 2022年郴州计划重点推进文旅项目101个 总投资354亿元
2022年郴州计划重点推进文旅项目101个 总投资354亿元
3月16日,我市举行全市文旅项目和城市大提质大融城项目集中开工仪式,市委书记吴巨培宣布项目开工。郴州嘉合欢乐世界、仙福路工地清风徐来 [详细]
03-19 宿州泗县深入推进文旅融合发展 擦亮城市品牌
宿州泗县深入推进文旅融合发展 擦亮城市品牌
近年来,泗县以争创安徽省文化旅游名县为目标,深入推进文旅融合发展,努力擦亮水韵泗州 运河名城城市品牌,全县文化旅游业实现高质量发展 [详细]
03-19 淡季不忘引流 京郊民宿市场有望迎来回暖
淡季不忘引流 京郊民宿市场有望迎来回暖
旅游淡季中的京郊民宿有望成为市场中最先复苏的板块。3月17日,北京商报记者调查发现,虽然正值旅游淡季,且受疫情变化的影响,不过各家民 [详细]
01-24 西安浐灞回应“社区领导怒怼咨询群众”:涉事社区主任已停职
西安浐灞回应“社区领导怒怼咨询群众”:涉事社区主任已停职
  西安浐灞回应“一社区领导在市民咨询离市政策时发生争执”事件 涉事社区主任已停职  西部网讯(记者 刘望)日前,网络上流传一条视频 [详细]
01-24 宁夏:“草根主播”把货卖 “线上赶集”年味浓
宁夏:“草根主播”把货卖 “线上赶集”年味浓
  (新春走基层)宁夏:“草根主播”把货卖 “线上赶集”年味浓  中新网宁夏红寺堡1月23日电 题:宁夏:“草根主播”把货卖 “线上赶 [详细]
01-24 西安:整区解封前24小时内进行不漏一人的全员核酸检测
西安:整区解封前24小时内进行不漏一人的全员核酸检测
  1月23日15时,陕西省政府新闻办公室举行陕西省新冠肺炎疫情防控工作第四十五场新闻发布会。陕西省卫生健康委员会党组成员、省中医药管 [详细]